CYCLIC OPERATION OF UNDERGROUND GAS STORE
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Within the framework of the Buckley —Leverette model, an accurate solution is given for the
problem of the combined filtration of two incompressible fluids in the course of successive
pumping of one of them alternatively into and out of a porous collector.

The normal operation of underground gas stores is cyclic in character [1]. Each cycle consists of
pumping a definite volume of gas into the bed and then removing it in an amount determined both by the re-
quirement for the gas and by the filtrational characteristics of the gas-saturation collector. The basic prob-
lem of cyclic operation of an underground gas store is to elucidate how the store dimensions and the volume
ratio of the gas pumped into and out of the bed change from cycle to cycle and how the volume of the so-called
"trapped" gas, i.e., that which is inaccessible for removal, grows. In particular, the important question is
whether the gas store works in steady conditions, i.e., conditions in which the dimensions of the gas store do
not increase and the volume of gas pumped out is practically equal to the volume pumped in.

In [2, 3], attempts were made to obtain answers to these questions by means of specific graphoanalytic
constructions, but no general solution was obtained. The investigation of the cyclic use of an underground gas
store undertaken here is based on the Buckley —Leverette model of two~-phase filtration. Accurate solution of
the problem is performed under the assumption that a definite volume of gas is pumped into the bed each time,
and pumping out continues until the water front approaches the borehole.

Consider the differential equation for the distribution of the saturation ¢ (x, t) of one of the cofiltering
fluids [4, 5]
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where v = 1, 2, respectively, forlinear and radial flow; f(¢) = kl(o)/ k(o) + Hoky(o)] isthe Buckley—Leverette
function. A characteristic feature of this function is that its curve has two parts, one convex and one concave,
separated by a point of inflection o1 (Fig. 1).

Suppose that the same volume of gas V is pumped into the bed in each cycle. Assume that w is constant;
then the injection of the gas will always extend over the same time T. Introducing dimensionless variables
according to the formulas £ = mx¥/vwT and 7 =t/T, Eq. (1) may also be written in dimensionless form
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It may now be assumed that the dimensionless injection time is unity. Note that, if the process of displace-
ment of water by gas is described by the function f(g), the inverse process of gas displacement by water is
described by the function f;(g) =1 —f(1 — ¢), where {'(c) =1;'(1 — o).

Equation (2) belongs to the class of hyperholic quasilinear equations, and therefore has real character-
istics. The equation of these characteristics and the conditions imposed upon them take the form
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and hence it follows that they are straight lines. Equation (2) may have discontinuous solutions, therefore at
the lines of discontinuity it is necessary to impose relations between the limiting values of the saturation "be-
fore" and "after" the discontinuity and relations expressing the mass balance of each of the phases [6]. In the
given case, these relations are the same, and take the form
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Fig. 1. Buckley —~Leverette function.
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where o and ¢~ are the saturations before and after the discontinuity, respectively. In addition, such dis-
continuities must he stable [6].

The solution will now be constructed. The first injection of gas into the bed initially filled with water
is described by Eq. (2) with the initial and boundary conditions o (¢, 0) = 0, ¢(0, 7) = 1. The solution is cons-
tructed in the region £= 0, 0 < 7 =< 1. This is the ordinary Buckley—Leverestte self-similar problem; its solu-
tion consists of the discontinuity ¢/7 ={'(cy;), where oy; is the frontal saturation, determined by the abscissa
of the point of tangency of the straight line drawn through the point (0; 0) to the Buckley curve {(¢) (Fig. 1) and
the subsequent centered wave &/7 = f'(¢). Before the discontinuity the saturation o is zero.

The picture of the characteristic and the position of the line of discontinuity are shown in the lower part
of Fig. 2. The gas-store dimension 7, after the first injection is determined by the relation /; = {'(gy;), while
the distribution of the saturation at the end of injection is found from the relation & = (o).

When the gas is pumped out, the direction of filtration of the phases is reversed, and therefore, for the
sake of convenience, the coordinate origin may be shifted to the point reached by the displacement front at the
end of injection. Then, the withdrawal of the gas is described by the equation given above, with the difference
that the gas saturation is replaced by the water saturation, and the function f(c) by the function f,(c). However,
the problem of gas withdrawal is not self-similar. The distribution of the saturation formed in the bed at the
end of injection ¢ (1, £) = ¢(¢) characterizes the initial condition for the given equation

L—8=[0c), 0<CE Ly (5)
Here ¢ €(0; 1~ oyy) and, in addition, o(0, T) =1, 7= 1.

The distribution of saturation in this stage of the process is also found by the method of characteristics.
It may readily be shown that all the characteristics leaving points of the initial straight line converge at a
single point C (Fig. 2). This is explained in that the initial distribution in Eq. (5) is obtained from the solution
of the same equation, which is a centered wave. It is necessary to construct a stable discontinuous transition
from these characteristics at the value (T = 1). It consists of the discontinuity (AC) traveling over the region
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Fig. 3. Comparison of the velocity of the discontinuity and the pertur-
bations: tan o ={'(¢7); tan 8 =D, D > f'(0™).

Fig. 4. Geometric interpretation of the results obtained.

of convergent characteristics and the subsequent centered wave adjacent to the boundary at which the satura-
tion is constant: ¢ = 1. It is obvious that this discontinuity is stable [6]. First, it overtakes all the charac-
teristics traveling in front of the dlscontmmty In fact, the rate of such characteristics, according to Eq. (3),
is determined by the values of the derivative f1 {t") and the rate D of the discontinuity by Eq. (4). Since o0 € (0;
1 = 0yy), then D > f,{07) (Fig. 3), L.e.,, the discontinuity intersects all the characteristics proceeding from the
interval(0; I;). Hence, it also follows that the time of withdrawal Ty, i.e., the time in which the saturation
discontinuity reaches the borehole, is less than unity. Second, it may be shown that the discontinuity (AC)
moves more slowly than the perturbations behind it, and the characteristics of the centered wave lying behind
it overtakes the discontinuity, reducing its velocity. Thus, the stability condition of [6] is satisfied.

The second gas injection is described by Eq. (2) in the previous reference frame. This problem is also
non-self-similar, If the value of the water saturation at the moment at which the water front (discontinuity)
reaches the borehole is denoted by o;,, the initial and boundary conditions for this equation will take the form

L—§

1+ 01
Thus, the problem is found to be analogous to the preceding one; specifically, in the interval (0; {;), there is
an initial distribution of the saturation obtained from the solution of the problem at the stage of gas withdrawal
in the preceding cycle, i.e., from the centered wave subsequent to the discontinuity (AC). A discontinuity (CD)
begins to propagate from this boundary ¢ = 0 (the borehole) against this background; its velocity here will be
larger than that of the perturbations preceding it. Hence, it follows that the point ¢ = [, is reached by the dis-
continuity more rapidly than characteristics starting from points of the interval (0; /;) converge at the point
(I;3 1 + 27). Behind the discontinuity (CD), there moves a centered wave, rays of which overtake the discon-
tinuity and slow it down (see Fig. 2). Since the injection time (unity) is larger than the withdrawal time 7 the
gas front does not stop at the point ¢ = [;, but will move further and,at T = 2 + Ty, reaches the point &= I,
Iy > 44). Inthis case, the gas saturation preceding the discontinuity is zero in the interval (I; L)), and its mo-
tion is described by the ordinary differential equation in Eq. (4), with o+ taken from the expression for a cen-
tered wave and ¢~ = 0.

= [ (o), 0€[0; 1—oyp]; 6(0, D=1, 1> 1+ 14

At this point, it is clear that the solutions for injection and withdrawal in any cycle of operation of an
underground gas store are general. Suppose that J; is the dimension of the gas store in the i-th cycle; oj; is
the frontal value of the gas saturation after the i-th saturation; oj, is the frontal value of the water saturation
after the i~-th withdrawal; T, is the duration of the i-th withdrawal. Then the determining relations take the
form; for the n~th injection (n > 1) 1
66(:: gg = Q’ T=n—14 EITM’ Ogggln—l: Iy 4—8&= To,n~1f’ (0), )

E>1, 4 0@, 0)=0,
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T>n—14+ Zrm, 0, 7) =1,

i=1
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TABLE 1. Cycle Change in the Parameters of an Underground Gas
Store in Approaching Steady Conditions of Operation

Cycle Rel. vol, of [|Rel,time of gas |Frontal sat, after |Frontal sat, after
No. . i bas store, 13/1, |Withdrawal, injection, withdrawal,
" Toi= Tgi/T Ty ;s
1 1,00 0,54 0,29 0,18
2 1,52 0,71 0,27 0,18
3 1,88 0,81 0,26 0,19
4 2,14 0,88 0,25 0,19
5 2,32 0,91 0,24 0,19
6 2,46 0,94 0,24 0,19
7 2,55 0,96 0,23 0,20
8 2,63 0,97 0,23 0,20
9 2,68 0,97 0,23 0,20
10 2,72 0,98 0,23 0,20
15 2,83 0,99 0,22 0,20
o j 2,92 1,00 0.21 0,21

for the n-th withdrawal (n = 1)

0o - of; !

At _6?2017:’1+ Eroi, O<§<ln ln—ng;(g)v (7)

i=l

n—1

T>n+2 Toi» 0{0, T)= 1.
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Since the structure of the solution is known, limiting relations for the gas-store parameters may be ob-
tained. First of all, it is shown that the dimensions of the gas store do not increase without limit, but grow
to some value 7, which is the limit of the sequence {ln} The terms of this monotonically increasing sequence
is given by the equation Iy, = f'(op). The finiteness of the function f'(0) means that this sequence is finite and
hence has the limit /= lim /,. Note, in passing, that the sequence of values of the frontal gas saturation o,
also has a limit. Since on belongs to the interval (gg; 1) in which {'(0) decreases monotonically, then the se-
quence{om} also decreases monotonically. It follows from the relation ¢py > ¢y that lm o, =0, >0y

It is now shown that the volume ratio of the gas pumped in and pumped out tends to unity. Note that,
after the n-th injection, the gas volume V3 n in the plate is
In Ont 13 Ont
Vs = \ 0df = S g———do = \ of'" (o) do
T j  do i

or

Va,rz = opyf' (O1y) — flon) + 1 ()

The solution of the problem used here is in the form of a centered wave for which d ¢ /do = f"(s). Since the

same gas volume (unity) is injected into the bed in each cycle, the gas volume Vg, affer the n-th withdrawal
is determined as the difference of V3 p+y and unity, that is

Vo =0, 41 1 (s 1) — O ): ©

and the amount of gas withdrawn in the n-th cycle as the difference of V3 n and V. Since lim ¢, = lim o, -

72> 00 n—+oco

g

o1 and the functions f and ' are continuous, then lim (V; V) =1 and the assertion has been proven. Hence,
o0

it follows, in particular, that the ratio of the durations of injection and withdrawal tends to unity, i.e.,lim 7o =
-0
1.

Next, 01 = lim o, is calculated, and it is shown to be equal to o1, the abscissa of the point of inflection
of the Buckley —Leverette function. In this case, analogously to the derivation of Eq. (8), an expression is ob-
tained for the gas volume Vyp remaining in the bed after the n-th withdrawal

ln
VOn = 51 Gd& = TOn [f’ (1 “Gn2) (1 - Gwz) - f (1 '«O‘n-z)]' (10)
5
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Since Vop and Ty have limits, and Tgp— 1, then there is a limit o, of the sequence 1 = ¢;;. Comparing Egs.
(9) and (10), it is found that

of' (o) —F 0 = o (03) — (o). (1)
Since 1 = ony < o7, then oy = oy; note that gy = o7.

It may be established from Eq. (11) that o; = oy = 07. In fact, this equation has a simple geometric in-
terpretation. The expression of' (¢} — f(0) determines the length of the intersect [OA] on the ordinate formed
by the continuation of the tangent to the Buckley curve drawn at a cerfain point. Equation (11) requires that
the points By(coy) and By(oy) (Fig. 4) lie on this curve in such a way that the tangents drawn at these points form
the same intersect on the ordinate. It may readily be noted here that the tangent (ABy) to the upper part of the
Buckley curve always passes higher than the tangent (AB,) to the lower part (when oy = 0y, they coincide, of
course). Assume that oy = 0y, i.e., 0y < 0y. Since, with alternating pumping, a stable transition from the
saturation value ¢y before the discontinuity to the value of unity after the discontinuity is achieved by a jump
along the Buckley curve from point B, to a point of section [B;C] and subsequent continuous motion along the
centered wave, inability to draw a tangent from point B, to the given segment of the Buckley curve means that
the assumption made has led to a contradiction. Hence, oy = 0. Taking into account that oy = o7 and oy = 07,
it follows that ¢y = o = ol.

Thus, the steady operation of an underground gas store is characterized by such parameters of the
Buckley curve as oy, f(o]), and f'(o1). At the same time, the dynamics of the transition of the gas store to
steady conditions of operation is determined by the behavior of this curve over the whole range of variation
of ¢.

The most significant parameters of steady operation of the gas store are as follows.
1. The limiting dimension of the gas store
1= (o). (12)

This result is especially important for explorative work to determine the possibilities of a particular bed for
use as an underground gas store, and also in calculations of the amount of gas which may be stored there.

2. The volume of the trapped —i.e., inaccessible for removal — gas actually consumed in creating the
gas store

Vo = aif (o)) — [ (o1)- 13)
This value is represented graphically by the intersect [OA] (Fig. 4).
3. The extraction coefficient ¢ (the volume ratio of the gas extracted and the gas stored)

1 1
= = . (14
A A 1+ o1f" (o1) — F (o1) !

This coefficient is the efficiency index of the operation of the underground gas store.

4. The mean gas saturation after injection o, and withdrawal o

G, = ale)—Tlp-l .o orf” (UII)—f(GI) ‘ 15)
I' (1) " (o1)

The dynamics of gas-store departure to steady conditions of operation is determined, as already noted,
by the specific form of the Buckley function. This process is characterized by a sequence of times 7j and
hence the volumes of gas withdrawn from cycle to cycle. These quantities have been calculated on a computer
by integration of ordinary differential Eq. (4). The experimental curve of [7] was used as the Buckley function.
The limiting dimension [ of the gas store in this case is 8.72 (1/1, = 2.92, i.e., the gas store may be increased
by no more than a factor of 2.92 in comparison with the first injection); the extraction coefficient ¢ = 0.41; the
mean gas saturations c;i = 0.28, 4?2 = 0.17. The sequence of T(j for a few cycles is given in Table 1, from which
it is evident that the difference between the withdrawal and the injection time becomes less than 3% in approxi-
mately the eighth cycle of gas-store operation.

NOTATION

o, saturation of one of the cofiltering fluids (gas or water); m, porosity; w, total specific filtrational
flow rate; £(0), f;(0), Buckley—Leverette function; ki (0), ko(0), relative phase permeabilities; u,, viscosity



ratio of phases; ¢y, abscissa of the point of inflection of the Buckley function; V, gas volume injected into the
bed; T, duration of pumping; Ty, duration of i-th gas withdrawal; t, time; x, spatial variable; 7, dimension-
less time; &, dimensionless spatial coordinate.

LITERATURE CITED

1. D. I. Astrakhan, A. M. Vlasov, A. E. Evgen'ev, et al., Gas Storage in Horizontal and Sloping Beds
[in Russian], Nedra, Moscow (1968).

2. A. M. Vlasov, "Determining the gas saturation in a horizontal water-bearing bed in the creation and
use of subterranean gas stores," Izv. Vyssh. Uchebn. Zaved., Neft' Gaz, No. 11, 91-96 (1963).
3. A. M. Vlasov, "Cyclic operation of underground gas store in a horizontal water-bearing bed in condi-

tions of a water head, " Izv. Vyssh. Uchebn. Zaved., Neft' Gaz, No. 7, 89-92 (1964).

4. J. Buckley and M. T. Leverette, "Mechanism of fluid displacement in sands," Trans. AIME, 146, 107-
116 (1942). —"

5, M, V. Lur'e, V. M. Maksimov, and M. V. Filinov, "Various cases of the mutual displacement of non-
mixing fluids in a porous medium, " Inzh.-Fiz. Zh., 41, No. 4, 656-662 (1981).

6. 1. M. Gel'fand, "Some problems of the theory of quasilinear equations, " Usp. Mat. Nauk, 14, No. 9,
87-158 (1959).

7. Chen' Shzhun Syan, "Problem of the filtration of a two-phase fluid, taking account of mass forces, "
Candidate's Dissertation, Moscow (1962).

TWO TYPES OF HEAT TRANSFER IN MEDIA WITH
THERMAL MEMORY

I. A. Novikov UDC 536.24

It is shown that media with thermal memory can be grouped into two classes, based on differ-
ent types of heat transfer. In media of the first class, the heat propagation velocity is infinite,
while in the second class, it is finite. This difference is responsible for the peculiarities of
the solutions of the heat-conduction problem in the two classes.

Currently in the study of heat- and mass-transfer processes under extreme conditions (low or very high
temperatures), the mathematical formulation of heat conduction and mass exchange is used including differ-
ential memory of the medium [1-4, 7-9]. A linerarized heat-conduction equation of this kind was first ob-
tained in [8]; it describes heat transfer with a finite heat propagation velocity [8, 9]. In the derivation of a
similar heat-conduction equation in [2], a different, more general form of the linearized integral heat-trans-
fer relation was used, which includes the instantaneous values A (0) and c(0) of the relaxation functions for the
heat flux and the internal energy. Then media with transient thermal memory can naturally be divided into
two classes: those with the instantaneous value A (0) » 0 (Fourier media) and those with A (0) = 0 (Maxwellian
media). It was also shown in [2] that the Nunziato heat-conduction equation with A (0) = 0 can be reduced to the
Pipkin—Curtin equation [8] and hence in this type of medium, heat propagates with a finite velocity. It is
shown below that in a Fourier medium, heat is transferred with an infinite velocity. Using the method of solv-
ing the heat-conduction problem for the Nunziato equation worked out in {4], we describe the heat-conduction
behavior for small values of the time in both types of media. The results are applied to the distribution func-
tion of an instantaneous point source and thig allows one to deduce the type of heat propagation and also the
qualitative features of the solution for each type of medium.

We consider the integrodifferential heat-conduction equation for the function u(t, M) = T, M) — T(0, M)
describing the linearized transfer process with transient thermal memory as formulated by Nunziato [2]:
c(®) fu
a, ot

dey () ou({t—=, M) o dy )

b(t, M)
dv ) ot dt ’

(]

o1
M (0) A - d[ [—a: (1)

0

Au(t—, M)} dv =
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